
U.S. Department of Energy

"~ Lawrence
I II I Livermore
I II I National
[[[]Laboratory

Preprint
UCRL-JC-147806

Attenuation of P-Waves by
Wave-Induced Fluid Flow

S.R. Pride, J.G. Berryman

This article was submitted to
Second Biot Conference on Poromechanics, Grenoble, France,
August 26-28, 2002

March 29, 2002

Approved for public release; further ’dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a joumal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doe.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from

U.S. Department of Energy
office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: repor ts@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http: / / www.ntis.gov / ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html



’ Attenuation of’P-waves by wave-induced fluid flow

Steven R. Pride
" Gdosciences Rennes, Universitd de Rennes 1, Campus Beaulieu, 35(J42 Rennes Cedex, FRANCE

James G. Berryman
University of California, Lawrence Livermore National Laboratory, P. O. Box 808 L-200, USA

ABSTRACT: Analytical expressions for three P-wave attenuation mechanisms in rocks are given and numeri-
callycompared. The mechanisms are: (1) Biot loss, in which flow occurs at the scale of the wavelength between
the peaks and troughs of a P wave; (2) squirt loss, in which flow occurs at the grain scale between microcracks 
the grains and the adjacent pores; and (3) mesoscopic loss, in which flow occurs at intermediate scales between
the various lithological bodies that are present in an averaging volume of earth material. Each mechanism is of
importance over different frequency bands. Typically, Biot loss is only important at the highest of ultrasonic fre-
quencies (> 1 MHz), squirt-loss (when it occurs) is important in the range of 10 kHz to 1 MHz, while mesoscale
loss dominates at the lower frequencies (<10 kHz) employed in seismology.

1 INTRODUCTION

In exploration seismology, the material-property res-
olution required for any forward modeling is dictated
by the wavelengths involved and can range anywhere
from meters to hundreds of meters depending on the
depth of investigation and the seismic source. Averag-
ing elements of earth materials having these dimen-
sions always possess "mesoscopic" heterogeneity in
addition to grain-scale heterogeneity. The mesoscopic
heterogeneity may be due to variations in lithology
(e.g., interbedded sands and shales) or due to macro-
scopic damage (e.g., highly permeable joints embed-
ded within a much less permeable matrix).

When compressional waves stress such materials,
some regions of the material respond with a different
fluid pressure than others. The accompanying fluid-
pressure diffusion attenuates the wave energy. Three
types of wave-induced flow may be identified depend-
ing on the distance over which the fluid-pressure must
equilibrate.

First, there is the wavelength-scale equilibration
between the peaks and troughs of the P-wave. This
flow is often called "Biot flow" after the seminal
work of Biot (1956). The time necessary for the fluid-
pressure differences between the peaks and troughs to
equilibrate goes as A2/D where A is the wavelength
and D is pore-pressure diffusivity. For P-waves, the
wavelength can be estimated as A = V/-~/f,

where H is the undrained compressional-wave mod-
ulus (Biot 1962), p is the bulk density of the material,
and f is frequency. The diffusivity may be written ex-
actly as D = Mk/~, where M is the fluid storage co-
efficient defined by Biot (1962), k is the permeability
of the material and r/is the fluid viscosity. The relax-
ation frequency fc, where the Biot-loss per cycle is
maximum occurs when the equilibration time equals
the wave period

Hr/
f~ -- m pk’ (1)

which is also, roughly, the frequency at which
viscous-boundary layers develop in the pores of the
material [c.f, Eq. (11)]. Thus, at least for Biot loss,
the relaxation frequency increases as rl/k.

Second, laboratory samples often have broken con-
tacts between the grains and/or microcracks in the
grains themselves. Much of this damage occurs as a
rock is brought from depth to the surface. Due to di-
agenetic processes that heal crack damage, it is un-
certain whether in situ rocks in a sedimentary basin
ever have significant numbers of broken grain con-
tacts or open microcracks. Nonetheless, if such grain-
scale damage is present, as it is in lab samples at am-
bient pressures, the fluid-filled microcracks will re-
spond with greater fluid-pressure deviations than the
principle porespace resulting in what Mavko and Nur
(1979) have called "squirt flow." Perhaps the most



complete description of this loss mechanism is that
given by Dvorkin et al. (1995). In squirt flow, the time
required for a micro-crack of aperature h and length R
(roughly a grain size) to equilibrate with an adjacent
pore, goes as R2/(h2Ky/rl) where K.f is the fluid’s
bulk modulus. The frequency at which squirt loss is a
maximum is therefore

fc= 7’

which has just the opposite dependence on 77 as that
of the Biot loss, as noted by many authors including
Dvorkin et al. (1995). This inverse dependence oc-
curs because the equilibration length R in squirt flow
is independent of frequency, while the equilibration
length in Biot flow is the wavelength (dependent on
frequency).

Finally, there is the "mesoflow" due to the meso-
scopic heterogeneity within an averaging volume.
More compliant porous materials respond with a
greater fluid pressure than do stiffer materials. In
the approximation where the mesoscopic heterogene-
ity can be attributed to just two porous materials,
Pride and Berryman (2002) have recently modeled the
mesoscopic flow in detail and have obtained general
analytical expressions for the frequency dependence
of the response. As with squirt flow, the length over
which the mesoflow equilibrates is a material prop-
erty independent of wavelength and so the relaxation
frequency is again inversely proportional to the fluid
viscosity as in squirt flow.

The goal of the present paper is to give analytical
expressions for these three loss processes and to com-
pare them numerically using the unified framework
established by Biot.

2 BIOT DESCRIPTION
Biot’s (1956; 1962) theory of the linear acoustics 
isotropic porous materials is quite general. It acco-
modates all three of the above loss mechanisms even
though Biot himself did not model the detailed fre-
quency dependence of either the squirt or mesoflow
mechanisms; however, he did mention these mecha-
nisms.

With an assumed e-iwt time dependence, Biot’s
poroelastic governing equations can be written

V . r = -w2(pu + plw)

--Vpf = --w2pfu-- iw k-~w) w ,

7" -.~

-Pl =

:(3),

(4)

[(H- 4G/3)V.u + CV.w]I

+G[Vu+(Vu) 7"-~V.2 uI] (5)

CV. u + MV. w. (6)

The various fields are: u, the average displacement
of the solid phase within the averaging volume;
-iww, the Darcy filtration velocity; py, the average
fluid pressure; and -r, the average stress tensor act-
ing throughout an averaging volume. The Biot elas-
tic moduli H, C, M and G are, in general, complex
and frequency dependent even if Biot (1956, 1962)
did not give specific models for such attenuation and
dispersion. These constants are exactlY related to the
constants having the clearest physical interpretation;
namely, the drained bulk modulus KD of the ma-
terial, the undrained (or "Gassmann") bulk-modulus
Ku, and the Skempton’s coefficient B that is defined
as the ratio of fluid pressure to confining pressure
Pc = -tr{r}/3 under undrained conditions. These
general relations are

H = Ku +4G/3, (7)

C = BI(u, (8)

B2
M = 1 - KD.KuKU./ (9)

In the Biot-loss model, KD, KU, and B are taken as
real constants, while for both the mesoflow and squirt
models, the complex frequency dependence of these
three constants must be established. In the present pa-
per, the isotropic shear modulus G is taken to be a
real constant for all mechanisms since rigorous mod-
els of the shear-induced mesoflow and squirt-flow are
presently lacking; however, one could use the squirt
model of Mavko and Jizba (1991) if an estimate 
the frequency dependence of G is desired.

The inertia coefficients are p, the bulk-material
density, and p f, the fluid density. The coefficient k(w)
is the complex frequency-dependent dynamic perme-
ability that has been properly modeled by Johnson
et al. (1987) 

-1

-~o = i- "iWWc T~
(10)

where ko is the d.c. permeability and where the fre-
quency wc corresponds to the situation where viscous-
boundary layers begin to form in the pores. Johnson’s
model predicts that

1 r/
wc- F pyko’ (11)

?

where F is the electrical formation factor that can be
estimated (if desired) from Archie’s law 1IF = era,
where m typically lies in the range [3/2, 5/2]. John-
son’s model further predicts that n = AZ/(koF),
where A is a weighted pore-volume to pore-surface
ratio; however, as suggested by Johnson et al. (1987),



we simply take n = 8 for all materials modeled in this
paper.

The P-wave slowness s is determined from the
above equations as

s2 = b q: b2 MH -- C2’ (12)

where b = (pM + #H-2pIC)/[2(MH- C2)] is
simply an auxilliary parameter and where /5 =
-rl/[iwk(w)] defines the effective inertia of the fluid
in relative motion. Taking the minus sign in Eq. (12)
gives an s having an imaginary part much smaller than
the real part and that thus corresponds to the normal
P-wave. Taking the positive sign gives an s with real
and imaginary parts of roughly the same amplitude
and that thus corresponds to the slow P-wave (essen-
tially, a pure fluid-pressure diffusion). We are only in-
terested here in the normal P-wave.

The above expressions are used to calculate both
the P-wave phase velocity vv and the attenuation mea-
sure Q~I for all three loss mechanisms; namely,

Vp = 1/Re{s} (13)

Q;I = Im{s}/Re{s}. (14)

3 MESOSCOPIC FLOW

To estimate the attenuation due to mesoscopic flow,
we use the theory of Pride and Berryman (2002) that
is rigorously correct whenever the mesoscopic hetero-
geneity can be attributed to just two porosity types. In
such a double-porosity model, the porous material is
a composite of two distinct porous continuua. Each
porous constituent as well as the overall composite is
taken to be isotropic; however, no other geometric or
material-property constraints are placed on the mix-
ture. The constituents are labeled with the index i =
1, 2 and each has their own suite of Biot coefficients.
Specifically, we use Ki to denote the drained bulk-
modulus of phase i, Bi to denote the Skempton’s coef-
ficient, and oq to denote the Biot and Willis (1957) pa-
rameter that is related to the Gassmann modulus K~’
of phase i as ai = (1-Ki/K~)/Bi. Each phase has 
well its own shear modulus, permeability and forma-
tion factor and both phases are saturated by the same
fluid. Finally, the volume fraction of each constituent
is denoted vi for i = 1, 2, where vl + v2 = 1.

Pride and Berryman (2002) have obtained the ef-
J

fective complex constants KD, Ku and B of the com-

posite in the form

1 a~a-- = an (15)
KD a33 + v/iw’

1 7 a23 + (a2a -7/iw) 2 (16)
-- = all -- a22
Ku iw a33 + v/iw

-a12(a33 + v/iW) + a13(a23 - v/iw) [17)B = 2
where the geomechanical constants aij are given by
[c.f, Berryman and Pride (2002)]

1
all -- (18)Ko

.o1(1 o /1a22 - ~ Br 1- K1/K2 (19)

v2ol2 ( 1 ~_2(1-- Q2)’~
a33 -- K2~ B2 1 -- I(2/g I ,] (20)

vlQ1
a12 -- O!1 (21)

K1

v2Q2
a13 -- Oz2 (22)

K2

a23 : Vl vk) (23)
Ki

Here, 1(o = lirr~0 UD(W) is the drained bulk modu-
lus of the composite in the low-frequency limit and is
the one constant that is not defined in terms of the un-
derlying constituent properties. All dependence of the
aij on the mesoscopic geometry of the constituents
and on the underlying shear properties is contained
within Uo. The two constants Q1 and Q2 are defined

vtQ1 -- i - K2/Uo (24)
1- U2/KI’

1 - Ul/Uo
v2Q2 - (25)

1 -- K1/K2"

The remaining model parameter is the complex
function 7(w) that has units of inverse viscosity and
is given by

i . 03= % i -
COm

(26)

where the mesoscopic flow relaxation frequency wm
is defined by

klO~ 1 1+ V~) 
’

(27)



and where % is given by

fl kl ((~1- Bo/~I- Bo/B1)% -
rl L~ 1- Bo/B1

[1 ce2 I - Bo/B2 K1L~]-1N Oq 1 Z ~ K2 L~J (28)
I.

Here, Bo = lim~0B(w) is the low-frequency
Skempton’s coefficient of the composite given by

a12 -]- a13
13o = - , (29)

a22 -I- 2a23 nt- a33

while fll is defined

vl vloq 1- Q1 v242 1- Q2

fl--~ = K1 1/gl-1/1(2 + K2 1/K2-1/KI"
(30)

The ratio V/S is the volume of composite divided
by the surface area of the interface separating the
two constituents within V. The dimensionless param-
eter 0 is given formal definition by Pride and Berry-
man (2002), but is expected to be close to unity
as discussed by the authors. Finally, the lengths L1
and L2 define the distance over which the fluid-
pressure gradients are defined in each phase when the
fluid-pressure equilibration is almost complete. Pride
and Berryman (2002) have rigorously defined these
lengths but, due to the complexity of the definitions,
they are treated here simply as representing a charac-
teristic linear dimension of each phase.

4 SQUIRT FLOW ¢

Here we consider the Dvorkin et al. (1995) squirt-flow
model. In this model, the individual grains making up
the solid skeleton are taken to be porous. The "grain
porosity" is due either to microcracks in the grains
themselves or to broken grain contacts that are them-
selves crack like. Since such crack-like porosity is
more compliant than the principle porespace residing
between the grains, there develop fluid-pressure dif-
ferences between the crack porosity of the grains and
the principle pores. The fluid-pressure response and
subsequent fluid flow inside the porous grains may
thus be modeled using Biot theory (poroelasticity).

This general perspective adopted by Dvorkin et al.
(1995) is a highly fruitful way of analyzing squirt
flow. Two small issues may be raised about the way
Dvorkin et al. (1995) develop their specific model: (1)
it is unnecessary to assume that the grain space may
be divided into effective unit cylinders aligned in the
direction of wave propagation and that are immersed
in a reservoir of constant fluid pressure; and (2) in tak-
ing the limit where the crack porosity is small, these
authors assume that the effective drained bulk mod-
ulus Kf)of the porous grains is independent of the

grain porosity Cg which results in a spurious depen-
dence on the fluid modulus Kf. Here, for simplicity,
we continue to make the assumption of the first issue;
however, we attempt to correct the second issue.

The key part of the Dvorkin et al. (1995) model is 
obtain an effective complex solid modulus Ks of the
porous grains that replaces the mineral modulus in the
standard Biot theory and to obtain the effective com-
plex drained modulus KD. It is assumed that if the
cracked grains are somehow healed without chang-
ing the topology of the principle porespace, then a so-
called "high-pressure" drained modulus Khp may be
defined with/(8 now representing the true modulus of
the single mineral making up the intact grain space.
Dvorkin et al. (1995) correctly state that 

1 1 1 ,1- (31)Kg Ks"
This equation serves to define KD under the restric-
tion that all grains are made of a single isotropic min-
eral. Using the cylindrical-grain assumption referred
to above, Dvorkin et al. (1995) determine the effective
complex mineral modulus of the porous grains to be

K~ + 42M9[1 - f(W)]
Kg(w) = 1 - agB f (ca) (3 2)

where K~ is the previously mentioned drained-
modulus of a porous grain, a9 is the Biot-Willis pa-
rameter of a porous grain

ag = 1 - K~/Ks, . (33)

and B is the Skempton’s coefficient of the single-
mineral porous material

B =
1/Khp - 1/K,

(34)
1/KhDp- 1~Ks +¢p(1/Kf- 1/Ks)i

with Cp the porosity of the principle porespace (¢g <<
Cp). The Biot storage coefficient Mg of the porous
grains is defined

1
Mg -- Cg 1 + Ag’ (35)

where Ag is the auxiliary term

As 1-¢gK/ ( K~ )
(36)

-- ¢; Ks 1 (1-¢g)Ks

All frequency dependence is confined to the complex
function f(w) given 

2J1(~)
(37)f(w) = ~J0(~)’
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Figure 1: The P-wave attenuation of a double porosity
composite having the properties discussed in the text¯
The three curves correspond to the viscosities of 10-2

Pa.s (oil), -3 Pa.s (ambient water), and 10-4 Pa.s
(hot water)¯

where J0 and J1 are Bessel functions and where the
relaxation frequency is defined by

kg M9= (38)Wsq R2 7/

Here, kg is the Permeability of the porous grains and
R is a characteristic grain radius.

These choices determine both the effective com-
plex drained modulus KD (w) and the real constant 
It remains only to state the standard Gassmann (1951)
result for the undrained modulus

Kv(w) = KD(w)/[1 a(w)B], (39

where a(w) = I - KD(W)/Kg(w), Using these three
expressions for Ku, KD and B in Eqs. (7)-(9) deter-
mines the complex H, C and M of Biot theory, which
in turn determines the squirt loss via Eq. (14).

5 NUMERICAL EXAMPLES
Some examples of P-wave attenuation are now given.
All examples were determined using Eq. (14)and the
appropriate H, C and M for the model.

In the mesoscopic flow model, the drained modu-
lus Ko of the double-porosity composite is taken to
be a harmonic average of the two constituent drained
moduli, i.e., Ko = I(~1K~2. Phase 2 in the follow-
ing examples is assumed to be "embedded" within
phase 1 so that LI~ > L2, and we assume for all
curves that L1 = 2L2. Because of such embed-
ding, we also make the crude modeling estimates of
V/S = (L1 + L2)3/(6L~), v2 = L~/(L1 L2) 3, and
Vl = 1 - v2. These choices formally correspond to
phase 2 being little cubes embedded within phase 1.
Although the detailed nature of the function Q-l(w)
changes depending on how L1/L2, V/S, and v2 are
modeled, our present choice is nevertheless represen-
tative of the level of attenuation that is present in

10 ~ ........ I ........ I ........ I ........ i ........ I ........ I ........ I ........ 1 ......
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Figure 2: The P-wave attenuation of a double-porosity
composite when the size L2 of the embedded phase
varies at fixed ratio L1/L2 = 2. It is not possible to
consider smaller lengths than 1 mm because the no-
tion of a porous continuum requires at least a few tens
of grains to be present in each phase.

double-porosity models. In the limited space here, ex-
haustive examples are not possible.

We assume that the zero-frequency drained mod-
uli in each phase Ki can be determined from the
effective-medium formula

Ki = (1 - ¢i)Ks
1 + ai¢i ’

(40)

where the degree of frame consolidation is controlled
by the dimensionless factor a{. For all curves, we as-
sume that phase 1 is a well consolidated sandstone
and take ¢1 = 0.15, al = 10, and kol = 10-14 m2
(where kol is the d.c. permeability of phase 1). Phase
2 is taken to be a less well-consolidated sand hav-
ing ¢1 = 0.25, a2 = 200, and ko2= 10-13 m2. The
macroscopic dynamic permeability of the composite
is taken to be k(~z) Vlkl(w).Both phases are as-
sumed to be occupied by a single isotropic mineral, so
that Skempton’s coefficient Bi of each phase is deter-
mined using Eq. (34) [replace KhDp and Cp by Ki and
¢~], while the Biot-Willis parameter of each phase is
determined using ai " 1 - Ki/K~.

In the first example given in Fig. 1, we take L2 = 1
cm and vary the fluid viscosity to show how the two
peaks in the attenuation vary. The peak to the left for
each curve corresponds to the frequency where the
mesoscopic structure just has time to equilibrate in
one cycle, while the peak to the right corresponds to
the Biot-loss maximum which occurs when the en-
tire wavelength of fluid pressure variation just equi-
librates in a cycle. Note that the effect of viscosity
is to shift the peaks differently as discussed in the
introduction. As expected, increasing fluid viscosity
has the effect of shifting the peak in mesoscale loss
to lower frequencies, because the fluid-pressure dif-
fusivity is decreasing with viscosity. Because the Blot



attenuation peak is always visible in these plots as the
high-frequency peak, we do not give a separate plot
for a simple uniform solid-frame porous material.

In the second example given in Fig. 2, we keep the
porous continuum properties the same as in the first
example but change the the size L2 of the embedded
phase while keeping the ratio L1/L2 = 2 constant and
using the fixed viscosity of water. Because the amount
of material that must equilibrate is independent of fre-
quency, we see that the peak mesoscale loss shifts as
the square of the distance as is expected for any dif-
fusion process. Clearly, if several different porosity
types were present, and if each porosity type had a
different length, one could expect nearly constant Q
behavior to emerge over the seismic band of frequen-
cies (f < 104 Hz).

To model squirt flow, we need to propose a model
for the effective porous grain properties kg (grain per-
meability) and K~ (drained bulk modulus of a porous
grain). Since the porosity within the grains is assumed
to be due to microcracks, it is reasonable to take
kg = ~bgh2/12 as the permeability model, where h
is a representative aperature (or gap) of the microc-
racks. The grain porosity is necessarily on the order
of Cg = h/R, where R is a representative grain ra-
dius. Last, the drained modulus of a grain is again
taken in the form K~ = (1 - Cg)Ks/(1 + agCg) 
ag = 200 (just like phase 2 of the mesoscopic model),
which corresponds to the microcracks being rather
compliant. It is important to emphasize that Dvorkin
et al. (1995) take both a and K~) as f itting p arame-
ters, independent of the grain porosity, which can lead
to rather different numerical results than those given
here. We feel that the present modeling is more inter-
nally consistent and therefore more physical.

In Fig. 3, we vary the aspect ratio h/R for a "high-
pressure" frame having a consolidation parameter of
ahp = 10 and ~p = 0.15, just like phase 1 of the meso-
scopic model. As required by Eq. (38), the peak squirt
loss shifts to lower frequency as the square of the as-
pect ratio and decreases in amplitude in direct pro-
portion to the aspect ratio. At ultrasonic frequencies,
squirt loss may dominate all other mechanisms, es-
pecially in lab samples for which many broken grain
contacts are expected to be present. However, in the
seismic band of frequencies, squirt loss is not ex-
pected to be the controlling loss mechanism.

To conclude, we underline that what people typ-
ically call "Biot loss" is the pressure equilibration
occurring between the peaks and troughs of a com-
pressional wave when the porous material is taken to
be uniform over the wavelength. Mesoscopic hetero-
geneity over the scale of a wavelength can be respon-
sible for considerable low-frequency attenuation, By
varying the parameters of the double-porosity model,
a wide range of Q-1 (w) behavior can be obtained. At-
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Figure 3: The Dvorkin et al. 1995 squirt model as in-
troduced into Biot theory for three different aspect ra-
tios, where h is an effective micro-crack aperature and
/~ is a grain size.

tenuations can have inverse Q up to Q-1 = 1, if the
embedded phase is taken to be extremely compliant.
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